|
std::vector< Eigen::MatrixXd > | Quu_inv_ |
|
Eigen::VectorXd | du_lb_ |
|
Eigen::VectorXd | du_ub_ |
|
int | NDX_ |
|
int | last_T_ = -1 |
|
Eigen::MatrixXd | control_limits_ |
|
double | initial_regularization_rate_ = 1e-9 |
|
bool | clamp_to_control_limits_in_forward_pass_ = false |
|
double | steplength_ |
| Current applied step-length. More...
|
|
Eigen::Vector2d | d_ |
| LQ approximation of the expected improvement. More...
|
|
double | dV_ |
| Cost reduction obtained by TryStep. More...
|
|
double | dVexp_ |
| Expected cost reduction. More...
|
|
double | th_acceptstep_ = 0.1 |
| Threshold used for accepting step. More...
|
|
double | th_stop_ = 1e-9 |
| Tolerance for stopping the algorithm. More...
|
|
double | th_gradient_tolerance_ = 0. |
| Gradient tolerance. More...
|
|
double | stop_ |
| Value computed by CheckStoppingCriteria. More...
|
|
double | dg_ = 0. |
|
double | dq_ = 0. |
|
double | dv_ = 0. |
|
double | th_acceptnegstep_ = 2. |
| Threshold used for accepting step along ascent direction. More...
|
|
std::vector< Eigen::VectorXd > | us_ |
|
std::vector< Eigen::VectorXd > | xs_ |
|
bool | is_feasible_ = false |
|
double | xreg_ = 1e-9 |
| State regularization. More...
|
|
double | ureg_ = 1e-9 |
| Control regularization. More...
|
|
double | regmin_ = 1e-9 |
| Minimum regularization (will not decrease lower) More...
|
|
double | regmax_ = 1e9 |
| Maximum regularization (to exit by divergence) More...
|
|
double | regfactor_ = 10. |
| Factor by which the regularization gets increased/decreased. More...
|
|
std::vector< Eigen::VectorXd > | xs_try_ |
| State trajectory computed by line-search procedure. More...
|
|
std::vector< Eigen::VectorXd > | us_try_ |
| Control trajectory computed by line-search procedure. More...
|
|
std::vector< Eigen::VectorXd > | dx_ |
|
std::vector< Eigen::VectorXd > | fs_ |
| Gaps/defects between shooting nodes. More...
|
|
Eigen::VectorXd | xnext_ |
|
Eigen::MatrixXd | FxTVxx_p_ |
|
std::vector< Eigen::MatrixXd > | FuTVxx_p_ |
|
std::vector< Eigen::MatrixXd > | Qxu_ |
|
Eigen::VectorXd | fTVxx_p_ |
|
std::vector< Eigen::LDLT< Eigen::MatrixXd > > | Quu_ldlt_ |
|
std::vector< Eigen::VectorXd > | Quuk_ |
|
double | th_grad_ = 1e-12 |
| Tolerance of the expected gradient used for testing the step. More...
|
|
double | th_stepdec_ = 0.5 |
| Step-length threshold used to decrease regularization. More...
|
|
double | th_stepinc_ = 0.01 |
| Step-length threshold used to increase regularization. More...
|
|
bool | was_feasible_ = false |
| Label that indicates in the previous iterate was feasible. More...
|
|
DynamicTimeIndexedShootingProblemPtr | prob_ |
| Shared pointer to the planning problem. More...
|
|
DynamicsSolverPtr | dynamics_solver_ |
| Shared pointer to the dynamics solver. More...
|
|
AbstractDDPSolverInitializer | base_parameters_ |
|
Eigen::VectorXd | alpha_space_ |
| Backtracking line-search steplengths. More...
|
|
double | lambda_ |
| Regularization (Vxx, Quu) More...
|
|
int | T_ |
| Length of shooting problem, i.e., state trajectory. The control trajectory has length T_-1. More...
|
|
int | NU_ |
| Size of control vector. More...
|
|
int | NX_ |
| Size of state vector. More...
|
|
int | NDX_ |
| Size of tangent vector to the state vector. More...
|
|
int | NV_ |
| Size of velocity vector (tangent vector to the configuration) More...
|
|
double | dt_ |
| Integration time-step. More...
|
|
double | cost_ |
| Cost during iteration. More...
|
|
double | control_cost_ |
| Control cost during iteration. More...
|
|
double | cost_try_ |
| Total cost computed by line-search procedure. More...
|
|
double | control_cost_try_ |
| Total control cost computed by line-search procedure. More...
|
|
double | cost_prev_ |
| Cost during previous iteration. More...
|
|
double | alpha_best_ |
| Line-search step taken. More...
|
|
double | time_taken_forward_pass_ |
|
double | time_taken_backward_pass_ |
|
std::vector< Eigen::MatrixXd > | Vxx_ |
| Hessian of the Value function. More...
|
|
std::vector< Eigen::VectorXd > | Vx_ |
| Gradient of the Value function. More...
|
|
std::vector< Eigen::MatrixXd > | Qxx_ |
| Hessian of the Hamiltonian. More...
|
|
std::vector< Eigen::MatrixXd > | Qux_ |
| Hessian of the Hamiltonian. More...
|
|
std::vector< Eigen::MatrixXd > | Quu_ |
| Hessian of the Hamiltonian. More...
|
|
std::vector< Eigen::VectorXd > | Qx_ |
| Gradient of the Hamiltonian. More...
|
|
std::vector< Eigen::VectorXd > | Qu_ |
| Gradient of the Hamiltonian. More...
|
|
std::vector< Eigen::MatrixXd > | K_ |
| Feedback gains. More...
|
|
std::vector< Eigen::VectorXd > | k_ |
| Feed-forward terms. More...
|
|
std::vector< Eigen::VectorXd > | X_try_ |
| Updated state trajectory during iteration (computed by line-search) More...
|
|
std::vector< Eigen::VectorXd > | U_try_ |
| Updated control trajectory during iteration (computed by line-search) More...
|
|
std::vector< Eigen::VectorXd > | X_ref_ |
| Reference state trajectory for feedback control. More...
|
|
std::vector< Eigen::VectorXd > | U_ref_ |
| Reference control trajectory for feedback control. More...
|
|
std::vector< Eigen::MatrixXd > | Quu_inv_ |
| Inverse of the Hessian of the Hamiltonian. More...
|
|
std::vector< Eigen::MatrixXd > | fx_ |
| Derivative of the dynamics f w.r.t. x. More...
|
|
std::vector< Eigen::MatrixXd > | fu_ |
| Derivative of the dynamics f w.r.t. u. More...
|
|
std::vector< double > | control_cost_evolution_ |
| Evolution of the control cost (control regularization) More...
|
|
std::vector< double > | steplength_evolution_ |
| Evolution of the steplength. More...
|
|
std::vector< double > | regularization_evolution_ |
| Evolution of the regularization (xreg/ureg) More...
|
|
PlanningProblemPtr | problem_ |
|
double | planning_time_ = -1 |
|
int | max_iterations_ = 100 |
|
ControlLimitedFeasibilityDrivenDDPSolverInitializer | parameters_ |
|