|
template<typename A , typename B > |
void | Eigen::internal::make_coherent (const A &a, const B &b) |
|
template<typename NewDerType > |
AutoDiffScalar< NewDerType > | Eigen::MakeAutoDiffScalar (const typename NewDerType::Scalar &value, const NewDerType &der) |
|
template<typename DerType > |
const AutoDiffScalar< DerType > & | Eigen::conj (const AutoDiffScalar< DerType > &x) |
|
template<typename DerType > |
const AutoDiffScalar< DerType > & | Eigen::real (const AutoDiffScalar< DerType > &x) |
|
template<typename DerType > |
DerType::Scalar | Eigen::imag (const AutoDiffScalar< DerType > &) |
|
| Eigen::return (x<=y ? ADS(x) :ADS(y)) |
|
| Eigen::return (x >=y ? ADS(x) :ADS(y)) |
|
| Eigen::return (x< y ? ADS(x) :ADS(y)) |
|
| Eigen::return (x > y ? ADS(x) :ADS(y)) |
|
| Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (abs, using std::abs;return Eigen::MakeAutoDiffScalar(abs(x.value()), x.derivatives() *(x.value()< 0 ? -1 :1));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2 |
|
| Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sqrt, using std::sqrt;Scalar sqrtx=sqrt(x.value());return Eigen::MakeAutoDiffScalar(sqrtx, x.derivatives() *(Scalar(0.5)/sqrtx));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos |
|
| Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sin, using std::sin;using std::cos;return Eigen::MakeAutoDiffScalar(sin(x.value()), x.derivatives() *cos(x.value()));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp |
|
| Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (log, using std::log;return Eigen::MakeAutoDiffScalar(log(x.value()), x.derivatives() *(Scalar(1)/x.value()));) template< typename DerType > inline const Eigen |
|
template<typename DerTypeA , typename DerTypeB > |
const AutoDiffScalar< Matrix< typename internal::traits< typename internal::remove_all< DerTypeA >::type >::Scalar, Dynamic, 1 > > | Eigen::atan2 (const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b) |
|
template<typename DerTypeA , typename DerTypeB > |
const AutoDiffScalar< SparseVector< typename internal::traits< typename internal::remove_all< DerTypeA >::type >::Scalar > > | Eigen::atan2 (const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b) |
|
| Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (tan, using std::tan;using std::cos;return Eigen::MakeAutoDiffScalar(tan(x.value()), x.derivatives() *(Scalar(1)/numext::abs2(cos(x.value()))));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin |
|
| Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (acos, using std::sqrt;using std::acos;return Eigen::MakeAutoDiffScalar(acos(x.value()), x.derivatives() *(Scalar(-1)/sqrt(1 - numext::abs2(x.value()))));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tanh |
|
| Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sinh, using std::sinh;using std::cosh;return Eigen::MakeAutoDiffScalar(sinh(x.value()), x.derivatives() *cosh(x.value()));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh |
|